Clonal Selection Algorithm for Learning Concept Hierarchy from Malay Text
نویسندگان
چکیده
Concept hierarchy is an integral part of ontology which is the backbone of the Semantic Web. This paper describes a new hierarchical clustering algorithm for learning concept hierarchy named Clonal Selection Algorithm for Learning Concept Hierarchy, or CLONACH. The proposed algorithm resembles the CLONALG. CLONACH’s effectiveness is evaluated on three data sets. The results show that the concept hierarchy produced by CLONACH is better than the agglomerative clustering technique in terms of taxonomic overlaps. Thus, the CLONALG based algorithm has been regarded as a promising technique in learning from texts, in particular small collection of texts.
منابع مشابه
A Hybrid Approach for Learning Concept Hierarchy from Malay Text Using GAHC and Immune Network
The human immune system provides inspiration in the attempt of solving the knowledge acquisition bottleneck in developing ontology for semantic web application. In this paper, we proposed an extension to the Guided Agglomerative Hierarchical Clustering (GAHC) method that uses an Artificial Immune Network (AIN) algorithm to improve the process of automatically building and expanding the concept ...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کاملDomain Ontology Guided Feature-Selection for Document Categorization
We present a novel method employing a hierarchical domain ontology structure to select features representing documents. All raw words in the training documents are mapped to concepts in a domain ontology. Based on these concepts, a concept hierarchy is established for the training document space, using is-a relationships defined in the domain ontology. An optimum concept set may be obtained by ...
متن کاملLearning Concept Hierarchies through Probabilistic Topic Modeling
With the advent of semantic web, various tools and techniques have been introduced for presenting and organizing knowledge. Concept hierarchies are one such technique which gained significant attention due to its usefulness in creating domain ontologies that are considered as an integral part of semantic web. Automated concept hierarchy learning algorithms focus on extracting relevant concepts ...
متن کامل